Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics.

نویسندگان

  • Zdenek P Bazant
  • Jia-Liang Le
  • Martin Z Bazant
چکیده

The failure probability of engineering structures such as aircraft, bridges, dams, nuclear structures, and ships, as well as microelectronic components and medical implants, must be kept extremely low, typically <10(-6). The safety factors needed to ensure it have so far been assessed empirically. For perfectly ductile and perfectly brittle structures, the empirical approach is sufficient because the cumulative distribution function (cdf) of random material strength is known and fixed. However, such an approach is insufficient for structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared with the structure size. The reason is that the strength cdf of quasibrittle structure varies from Gaussian to Weibullian as the structure size increases. In this article, a recently proposed theory for the strength cdf of quasibrittle structure is refined by deriving it from fracture mechanics of nanocracks propagating by small, activation-energy-controlled, random jumps through the atomic lattice. This refinement also provides a plausible physical justification of the power law for subcritical creep crack growth, hitherto considered empirical. The theory is further extended to predict the cdf of structural lifetime at constant load, which is shown to be size- and geometry-dependent. The size effects on structure strength and lifetime are shown to be related and the latter to be much stronger. The theory fits previously unexplained deviations of experimental strength and lifetime histograms from the Weibull distribution. Finally, a boundary layer method for numerical calculation of the cdf of structural strength and lifetime is outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic Fracture and Nano-Macro Transition for Strength and Lifetime Statistics of Quasibrittle Structures

This paper presents a physically based theory to model the strength and lifetime distributions of quasibrittle structures. The theory is derived from the fracture mechanics of atomic lattice cracks propagating through the lattice by tiny jumps over numerous activation energy barriers on the surface of the free energy potential of the lattice, caused by crack length jumps by one atomic spacing. ...

متن کامل

Nano-mechanics based modeling of lifetime distribution of quasibrittle structures

The statistics of structural lifetime under constant load are related to the statistics of structural strength. The safety factors applied to structural strength must ensure failure probability no larger than 10 , which is beyond the means of direct verification by histogram testing. For perfectly brittle materials, extrapolation from the mean and variance to such a small tail probability is no...

متن کامل

Scaling of Static Fracture of Quasi-Brittle Structures: Strength, Lifetime, and Fracture Kinetics

The paper reviews a recently developed finite chain model for the weakest-link statistics of strength, lifetime, and size effect of quasi-brittle structures, which are the structures in which the fracture process zone size is not negligible compared to the cross section size. The theory is based on the recognition that the failure probability is simple and clear only on the nanoscale since the ...

متن کامل

Computation of Probability Distribution of Strength of Quasibrittle Structures Failing at Macrocrack Initiation

Engineering structures must be designed for an extremely low failure probability, Pf < 10 6. To determine the corresponding structural strength, a mechanics-based probability distribution model is required. Recent studies have shown that quasibrittle structures that fail at the macrocrack initiation from a single representative volume element (RVE) can be statistically modeled as a finite chain...

متن کامل

Subcritical crack growth law and its consequences

For brittle failures, the probability distribution of structural strength and lifetime are known to be Weibullian, in which case the knowledge of the mean and standard deviation suffices to determine the loading or time corresponding to a tolerable failure probability such as 10−6. Unfortunately, this is not so for quasibrittle structures, characterized by material inhomogeneities that are not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 28  شماره 

صفحات  -

تاریخ انتشار 2009